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ABSTRACT 

Let K be  a field a n d  let G be a finite group.  G is K-admis s ib l e  if there  

exists  a Galois extens ion L of K wi th  G = Gal(L/K) such  t ha t  L is a 

m a x i m a l  subfield of a central  K-div is ion  algebra.  Th i s  pape r  con ta ins  a 

charac ter iza t ion  of those  n u m b e r  fields which are Q16-admissible.  T h i s  

is the  s a m e  class of  n u m b e r  fields which  are 2A6 = SL(2, 9) a n d  2A7 

admissible. 

1. I n t r o d u c t i o n  

Let L be a finite extension field of the field K;  L is K - a d e q u a t e  if L is a maximal 

subfield of a division algebra with center K.  

A finite group G is K - a d m i s s i b l e  if G ~ Gal(L/K) for some K-adequa te  

Galois extension L of K.  

The main result of [3] states that  if H is any subgroup of SL(2, 5) which 

contains a S2-group, and K is a number field, then H is K-admissible if and only 

if either ~ = i ~t K or K has at least 2 places over the prime 2. In [6] the 

same conditions were shown to characterize the number fields K for H = A6, A7 

or Ds, the dihedral group of order 8, to be K-admissible. In this paper  we will 

consider number  fields K which satisfy 

(*) Either i and ~ are both not in K or K has at least 2 places over the 

prime 2. 

The purpose of this paper  is to prove the next result. 
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THEOREM A: Let K be an a/gebraic number field. The following are equivalent. 

(i) Q16, the quaternion group of order 16, is K-admissible. 

(ii) 2As = SL(2, 9), the double cover of As, is K-admissible. 

(iii) The double cover 2A7 of Ar is K-admissible. 

(iv) Condition (*) is satisfied. 

In an earlier paper [2] it was shown that 2A~ and 2At are Q-admissible. This 

result is of course subsumed under Theorem A, though a different construction 

was used in [2]. 

All of these results are initially based on Schacher's criterion [5] which asserts 

that a number field L is K-adequate if and only if every Sylow group of Gal(L /K)  

is contained in the decomposition group for at least 2 places of K.  By the 

Tchebotarev density theorem, only noncyclic Sylow groups need to be considered. 

Then Mestre's Theorem [4] is used to construct suitable polynomials. The third 

key result is Serre's Theorem [7], which makes it possible to consider double 

covers. All of these statements are summarized in [3]. 

It is not easy to construct a polynomial with Galois group 2At. The smallest 

possible degree is 240, the minimum index of a subgroup of odd order. As far 

as I know no one has found a polynomial with Galois group 2A~ or 2At over Q. 

(I have found one with Galois group 2A5 over Q of degree 24 (on a computer), 

however the splitting field is not Q-adequate.) 

The fact that (i), (ii), or (iii) implies (iv) in Theorem A is not difficult. See 

Theorem 3.2. The converse is however much more subtle. The essential new diffi- 

culty arises in the proof of Theorem 4.6. Let K2 be the completion of K at some 

place over 2. Assume that [K2 : Q2] > 1. Then Qls is a Galois group over Kz. 

However, additional conditions are needed to show that there exists an extension 

of K of Q with Galois group Q16 such that the decomposition group at K2 is 

also Q16. For Qs the existence of such an extension can be settled fairly easily, 

see [3, p.10]. The case of Q16 is handled in this paper by constructing explicit 

polynomials. Unfortunately several cases need to be considered separately. This 

is done in Sections 5-8. Mestre's method is then applied twice, first in Section 

9 to construct a quartic, then in Section 11 to construct a polynomial of degree 

7, which is used to complete the proof of Theorem A. [6, Corollary 2] is helpful 

here. 
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2. N o t a t i o n  

The notation in this paper  is s tandard but we list some of it here to avoid con- 

fusion. 

If v is a nonarehimedean place of K and a is a~ integer in K with a ¢ 0, then 

~/v(a) is the exact power of the prime ideal corresponding to v which divides a. If 

a, b are integers in K with ab ~ 0 then v~(a/b) = v~(a) - v,(b). The completion 

of K at v is denoted by K~. 

Let E be a field and let f ( x )  be a monic polynomial in E[z] with distinct roots. 

Define Trl (a  ) to be the trace of a in E[x]/(f(x)) .  Then qf(a) = T r f ( a  2) defines 

a nondegenerate quadratic form over E. If K is a number field, let wv( f )  denote 

the Hasse invariant of this form at the place v, (a ,  fl)~ denotes the Hilbert symbol 

at v. 

Let A ( f )  denote the discriminant of the polynomial f .  

If  a, b E K × write a ~ b if a :- bc 2 for some c E K.  

Let Dn, Qn denote the dihedral group, quaternion group, of order n respec- 

tively. 

3. A d m i s s i b i l i t y  for  loca l  fields 

THEOREM 3.1: Let p be an odd prime and let Kp be a finite extension of Qp 

with residue class tleld Fq. Let H be a Galois group over Kp and let T be a 

2-group contained in H. 

(i) / f  q - 1 (rood 4) then T is not a dihedral group (of order at least 8) nor a 

quaternion group. 

(ii) /-fq - 3 (rood 8) then T is not QI~. 

Proof: Replacing Kp by a finite extension it may be assumed that  H = T. The 

corresponding field is tamely ramified as q is odd. Hence T is a homomorphic 

image of G = (x ,y  [ x - l y x  = x q ) .  Let G4 be the subgroup of G generated by 

all 4 th powers in G and let G = G/G4. Then ~-1~2 = ffq = ff in Case (i) and 

so neither a dihedral group of order at least 8 nor a quaternion group can be a 

homomorphic image of G. 

If q - 3 (mod 8) then ff is not conjugate to 9 -1 in G = G~ < yS >. Thus (ii) 

follows. | 

THEOREM 3.2: Let K be an algebraic number  t~eld which has only one prime 

divisor of 2. Assume that either i = ~ E K or x/-Z2 E K.  Then none of Q16, 
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2Ae, 2A7 is K-admlssible. 

Proof: Let H = Qle or 2A,, for n = 6 or 7. Suppose that H is K-admissible. Let 

L be a K-adequate extension of K with H = Gal(L/K).  By Schacher's criterion 

[5] or [3 ,Theorem 2.1] a S2-group T of H is contained in the Galois group of 

at least 2 completions of K.  As ITI > 2, neither of them can be Archimedean. 

Hence by assumption one of them, Kp, occurs at an odd prime p. Let Fq be the 

residue class field of Kp. If i E K then q = 1 (mod 4). If vfL-2 E K then q - 1 

or 3 (mod 8). As T is a quaternion group of order 16, this contradicts Theorem 

3.1. | 

4. The  construction of  certain polynomials 

Let K be a number field. Define h(x) E K[x] by 

(4.1) h ( x ) = x  4 - 2 a x  2 +b, ab#O.  

The following 3 facts are well known. See e.g. [3, Section 5] 

(4.2) Zx(h) = 2 5 6 b ( a  - b ?  ~ b. 

If Wv is the Hasse-Witt  invariant of the form Trh(a 2) at the place v then 

(4.3) w~(-2,  A(h))~ = ( a , -1 )~ (b , -2a )~ (a  2 - b , -ab)v 

for every place v of K.  

THEOREM 4.4: The following are equivalent. 

(i) h(x) is irreducible with Gal(h(x) /K)  ~- Ds. 

(ii) b, a 2 - b, b(a 2 - b) are all nonsquares in K.  

For convenience we state here a consequence of Serre's Theorem [7]. 

THEOREM 4.5: Let L be a splittingfield ofh(z)  over K.  Suppose that Gal (L /K)  

~- Ds. The following are equivalent. 

(i) L C_ M with Ga l (M/K)  ~_ Q,e. 

(ii) w , ( - 2 ,  A(h)) ,  = 1 for every place v o f K .  

Our immediate object is to prove the following result. 
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THEOREM 4.6: Assume  that (*) of  Section 1 is satisfied. There exists a polyno- 

m ia /h ( z )  as in (4.1) such that the following hold. 

(i) There exist at least 2 places in K which do not divide 3 so that the decom- 

position group at each o£ these is Ds. 

(ii) w~(-2,  A(h))v = 1 for every p/ace v o f K .  

This will be proved in the next 4 sections. The proof is divided into 3 eases as 

follows. 

(I) i = ~ g a n d ~ g .  

(II) i ~ g , ~ E g .  

(IIl) i E g .  

5. 2 - a d i e  f i e l d s  

In this section K is a finite extension of Q2 such that the index of ramifica- 

tion e = 2k is even. Let /to be the maximal unramified subfield of K.  Then 

[K : K0] = e = 2k. Let Fq be the residue class field of K and let A0 be the group 

of all (q - 1)st roots of unity in K.  Let A = A0 U {0}. Then A C K0. If 7r is any 

prime element in K and 19 is an integer in K then 

o o  

(5.1) 0 = ~ ~ J ,  ~i ~ A. 
0 

Furthermore, the coefficients a t are uniquely determined by 6. By (5.1) 

(5.2) e '  -- + 2 
j<s 

Hence 

k 
(5.3) 02 = Z a ~  r2i + 2aoa,~" (mod 7r2k+2). 

0 

There exists a unit u with 

(5.4) 2 = r 2 t u .  

LEMMA 5.5: /lea E K0 and a -- 0 (rood lr) then a - 0 (rood ~r2k). 

Proof." Clear as lr 2~ is a prime in K0. | 
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L E M M A  5 . 6 : 1  + ~r 2 i s  n o t  a s q u a r e  in  K .  

Proof: If 1 + r 2 = 02 then (5.3) implies tha t  

1 + 71" 2 ~-~ EOt27r 2j "~- 2 a O a l r  (mod 7r2k+2). 

Hence s0 = a l  = 1 and a i = 0 for 1 < j <_ k. Therefore  0 - 2 r  (mod 7r 2.+2) 

which is not  the caSe. | 

LEMMA 5.7: Suppose that v/-Z2 E K.  

(i) H e  > 2 , - ( 1  + ~.2) iS n o t  a square in K.  

(ii) / r e  = 2 there exists a pr ime ~r0 such that - ( 1  + 7to 2) is not a square in K.  

Proof:  Since v/-Z2 E K ,  u = - v  2. If v = ETi~r i for 7i E A, (5.3) yields 

(5.8) u --- -(Tg + 7127r2 "{- 27071~) (rood ~r4). 

Suppose that 02 = -(I + ~r2). As -1 = 1 + 2 + 4 (rood 8) it follows that 

(5.9) -I- ~r2 --- (I + 2 + 4)(I + r2) =_ 1 + 2 +4 + ~'2 + 2~2 (mod 7r6). 

(i) By (5.3) and (5.9) 

1 + ~r 2 + 2 --  Ea21r 2j q- 2aoalTr (mod 27r2). 

Hence by (5.8) 

l + 7r 2 + 7~Ir 2' - Ea~r ~j + 2~o~,7r (rood 271" 2) 

aSz.2k = _ ~ k  (mod 2zn). T h u s a 0  = a l  = 1 a n d a j  = 0 f o r  1 < j < 2k. 

Therefore  

2k = 2k + ( rood 2) 

~r). By Lemma 5.5, 0 -= 27r (mod 2~r 2) which is not  the and so 7 2 - a2k (mod 

EaSe. 

(ii) By (5.9) 

-1-7r 2 - 1 + 2 + 4 + ~ r  2+2~ 2=1+u~ 2+u2~r 4+~2+u2~r4 (rood ~r6). 

A s  2~ "4 = 0 (mod ~r e) this yields 

(5.10) - 1  - ~'~ - 1 - (70 ~ + 7~r2)~r 2 + ~r 2 (mod ~rS). 
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Suppose first t h a t / t o  ~ Q2- Choose 7 E A , 7  ~ 1. Let 7r = 7-1V/-: '2. Hence 

2 = -72~r 2 and  v = 7 = 70,71 = 0. Now (5.3) and  (5.10) imply  

1 --  ,~2~2 -t- 71"2 ~ a 2 -~- a217r 2 -~ 2 a 0 a l  7r (mod 71"4). 

Therefore a0 = 1 and 

(5.11) (I - 7 2 - a2)7r 2 ---- 2a17r (mod 7r4). 

Hence 1 - ,/2 _ aT = 0 (rood lr) and so Lemma 5.5 implies tha t  

0 =- 2alTr (mod 7r4). 

Thus  a l  = 0 and (5.11) implies tha t  7 2 - 1 (rood 7r) which contradicts  the choice 

of ~. 

Suppose finally tha t  K0 = Q2. Thus  K = Q 2 ( x / ' ~ ) .  Let 7r = v / ' ~ ( 1  + x / ~ ) .  

Thus  v = (1 + x/Z2) -1 and so v = v - '  _-_ 1 + 7r (mod 7r2). Thus  70 = 71 = 1 

and (5.10) becomes 

- 1  - r 2  _ 1 - 7r 2 - ~ 4  + 7r2 _ 1 + ,~.4 ( r o o d  ~rs) .  

Therefore (5.3) implies tha t  

i + _ + + + 2ao 1 + 2aoa   (,nod 

Hence a0 = I, al = 0 and so 

1 + =4 _ 1 + a]~ 4 + 2a2~ = - 1 + a]~ ~ - a2~ 4 (rood ~'). 

As a2 E K0, a 2 - a2 = 0 and so 71.4 ~ 0 (rood ~r 5 ) which is not the case. I 

LEMMA 5.12: Suppose  that  i E K and k is odd. Let  a = 1 + i. Then  1 + a 2, 

2 + a 2 and (1 + a2)(2 + a 2) a l e  a.ll nonsquares in K .  

Proof'. Since k is odd v ( a )  is odd. Fur thermore  2 + a  2 = 2 ( 1 +  0 and so t t ( 2 + a  2) 

is odd. Thus  neither 2 + a 2 nor  (1 + a2)(2 + a 2) is a square in K.  

Let K1 be an unramified extension of Q2(i). By Lemma 5.6, 1 + a 2 is not  

a square in g l .  Therefore Q2(i,  x/1 + a 2) is ramified over Q2(i).  Hence if 

x/1 + a 2 ~ K then 21k contrary  to assumption.  1 
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LEMMA 5.13: S u p p o s e  tha t  i E K and  k > 4. Le t  1 - i = l r tv  for  a p r ime  ~r in 

K .  T h e n  v = ETj~ "j w i t h  70 # O, 71 = 0 and  7i  E A for all j .  

Proof." A s  v is a unit ,  70 # 0. By definition 1 - i = ~rkE717r j. Thus  

(5.14) 1 - i - 7o7r t~ -- 71~r k+l (mod rk+2). 

Since k E 4, K0(i ,  Tr k) is a proper  subfield of K .  As 

1 - i  
rr k 70 - 0  (mod 7r) 

it follows tha t  
1 - i  

v(---~£- - 7 0 )  > 1. 

Hence 71 = 0 by (5.14). 1 

LEMMA 5.15: S u p p o s e  tha t  i E K and  k > 4. L e t  ~r be  a pr ime in K .  T h e n  

1 + 7r2,2 + ~.2, and (1 + 7r2)(2 + lr 2) are edl nonsquares  in K .  

Proof." By Lemma  5.6, 1 + Ir 2 is not  a square in k. 

Let  1 - i = lrtv. By Lemma 5.13, v = ETj~r j with 71 E A and 3'1 = 0. Since 

1 oo  

- i -  1 - ( 1 - i )  = E ( 1 - i ) J  
o 

it follows tha t  
oo 

i =  - 

0 

By (5.3) this implies tha t  

(5.16) 
OQ 

iv  2 = - v  2 E ( l r k v ) J  -- - v  2 - v3~r ~ - v 2 + vaTr k (mod 71"2k). 
0 

Observe tha t  2 = i71"2v 2. Hence 

2 - ~ - ~ 2 _ ~ 2 ( 1 - [ - ~ 2 k - 2 i V 2 ) .  

Suppose tha t  (2 + Ir2)(1 q- ~r 2) is a square, then 
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By Lem_ma 5.13, (5.2) and (5.16) 

82 - 1 + ~2 + 70~2k-2 + 7g~2~ (rood ~2~+2). 

By (5.3) this implies that 

1 + ~2 + 72oIr2~-~ + 7~oTr2k _ Ea~.Ir2j + 2~oa,~r (mod Ir2k+2). 

Hence r~o = al = I and 

~7 -- 1 + ~r 2 + 702~r 2k-2 + 70~r 2k - ~ a ~ r  2j = 2~r (mod ~r~+2). 

Therefore  u(~/) = 2k + 1. However ~ ~ K(~r 2) and so u(~/) must  be even cont rary  

to the previous s tatement .  

Suppose tha t  2 + ~r 2 is a square, then so is 

1 + ~r2k-2iv2 = (2 + ~r2)~r -2 = 02. 

By (5.16) and Lemma  5.13 

(5.17) e 2 ~ 1 + lr2k-2(v 2 + v37r k) _= 1 + ~r2k-2(ET}~r2i + 7g~r k) 

= 1 + E ~}~2~+2i-2 + ~g,~-2 (mod ~3~). 
J 

02 = 1 + E a~ 7r2j + 27°~rk-' (mod 7r3k). 
jkk-1 

Therefore  

~/= 2701r k-1 (mod lr3k), 

where 
A 2_2k-}-2j-2 .y03~3k-2 Y]= 1-~-~',j,, + - -1- -  E O1271"2J" 

j>k-1 

Hence v0/)  = 3k - 1 is odd,  which is impossible as ~ E K0(Tr2). 

By (5.3) 

Hence 40 = 1, a j  = 0 for 1 < j < k - 1 and ak-1  = 70. Thus  
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LEMMA 5.18: S u p p o s e  tha t  i • K ,  none  o £ 1 v / - ~ ,  w = v~ ,  x/1 - i are in K and  

[K :  Ko] = 4. T h e n  i, 1 + i and  i(1 + i) = - (1  - i) are nonsquares  in K .  

Proof." Clear. | 

LEMMA 5.19: S u p p o s e  tha t  i • K ,  lr is a prime in K and [K : K0] = 4. T h e n  

lr, 1 - r ,  lr(1 - 7r) are all nonsquares  in K .  

P r o o ~  Clearly Ir and 7r(1 - 7r) are nonsquares in K as they are primes. If 

1 - ~r = O a then (5.2) implies that 1 - r = a~ (rood ~r2), which is not the case. 
| 

6. Case  I o f  Se c t i on  4 

Throughout this section K is an algebraic number field such that i ~ K and 

LEMMA 6.1: There exist  in~n i t e l y  m a n y  rat ional  p r imes  p w i t h  p = 7 (rood 8) 

such t ha t  some prime divisor  o f  p in K has  odd  residue class degree. 

Proof." The Galois closure L of K(v/2, i) over Q i s / ~ ( v ~ ,  i) w h e re /~  is the 

Galois closure of K. If i E K(v/2) then ~ E K ( v ~ )  and so K ( i )  = K(v/-Z-2). 

Thus v/2 = iv/-Z2 • K and so i • K(v/2) = K contrary to assumption. Hence 

there exists a • G a l ( L / K ( v r 2 ) )  with a( i )  = - i .  By the Wchebotarev density 

theorem there exist infinitely many primes p some of whose divisors in K(v/2) 

correspond to a. Then p ~ 3 (mod 4) and the residue class degree of the selected 

divisor o fp  in K(V~),  and hence in K,  is odd. As x/~ • K(V~), p = +1 (mod 8). 

Therefore p = 7 (mod 8). | 

P r o o f  o[  T h e o r e m  4.6 in Case (I): By Lemma 6.1 there exist primes pl ¢ p2 

which do not ramify in the Galois closure h" of K over Q, all of whose divisors 

have odd residue class degree in K and satisfy PY ~ - 1  (mod 8) for j = 1, 2. 

Then pip2 - 1 (rood 8) and so pip2 = ~2 + m 2 + n 2 for ~, m, n E Z such that 

n is relatively prime Pip2. Hence for any place v of K 

(6.2) (PIP2 - n 2, -1)v  = (~2 + m 2, - 1 ) .  = 1. 

Let a = pip2 ,  b = p l p z n  2 and let h(x )  = x 4 - 2ax  2 + b. Then 

b ~ , ~  PlP2, a 2 -- b = p lp2(plp2  - n2), b(a 2 - b) ..~ (pip2 - n2). 
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Let {lrj} be all the prime divisors of PiP2 in K.  Let vj be the valuation of 

K corresponding to lrj for all j .  As Pl and P2 are not ramified i n /~ ,  v j (b )  and  

v j (a  s - b )  are odd for all j .  Since p = 3 (mod 4), ( - l / p )  = - 1  for p = Pl or P2. As 

the residue class degree of each r j  is odd this implies that b(a 2 - b) ~, (PlP2 - n 2) 

is not a square in the completion K i of K at vj. This proves Theorem 4.6 (i). 

Let w = w~ for any place v of K.  By (4.3) 

w ( - 2 ,  A(h))  = ( p l ~ , - 1 ) ( p l p ~ , - 2 p , ~ ) ( p ~ p 2 ( p l ~  - . 2 ) , _ 1 )  

= ( p ~ ,  2) (p1~ - . 2 , - 1 )  = (p,p~, 2) 

by (6.2). As pj = - 1  (mod 8), (Pi, 2) = 1. 

7. Case  I I  o f  Sec t ion  4 

Let K1 a nd / ( 2  be two completions of K at prime divisors of 2 in K.  For j = 1, 

or 2 use Lemmas 5.6 and 5.7 to choose a prime 7rj e K j  so that 4-(1 + 7r]) are 

both nonsquares in K j .  

Define h i ( x )  = x 4 - 2 a j x 2 + b j  with aj = 1 and bj = l+~r~. Then a ~ - b j  = - l r ]  

and  b j ( a ~ - b i )  ,',, - ( l+~r] ) .  The weak approximation theorem yields the existence 

of an element ~r in K such that if a = 1 and b = 1 + lr 2 then Theorem 4.4(ii) 

holds. ~ t r thermore  by Krasner's Lemma it may be assumed that Theorem 4.6(i) 

holds. 

Let w = wv for any place v of K.  By (4.3) 

,0 ( -2 ,  ~ (h ) )  = (b , -2 ) (1  - b , -b)  = ( b , - 2 ) ( - ~  ~, 1 + ~ ) ( _ , ~ 2 , - 1 ) .  

As v/-S2 E K and ( - 1 , - 1 )  = ( - 1 , 2 )  = 1, Theorem 4.6 (ii) holds. 

8. Case  I I I  o f  Sec t i on  4 

Let K1 and K2 be two completions at prime divisors of 2 in K. For j = 1, 2 

we will first show the existence of elements c j , u j , v j  in K j  such that aj  = c], 

bj = 2u] + v~ and  h i ( z )  = z 4 - 2 a j x  2 + bj has Galois group over Kj  isomorphic 

to Ds. By Theorem 4.4 the latter condition will follow once it is shown that bj, 

2 _ bj and  b j (a]  - bj)  are all nonsquares in K. aj  

Let ej denote the ramification index of Kj  over Q2. The following eases wiU 

be handled separately. 

(S.1) ej - 2 (mod 4). 
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(8.2) ej  = 0 (mod  4) and ej  > 4. 
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(8.3) ej = 4 and  none of l x / T ~ ,  x/1 - i, w = v ~  are in K.  

(8.4) ej  = 4 and  ~ = V~ E K .  

(8.5) ej = 4 and v/1 + ei E K for e = 1 or - 1. 

In Case (8.1), let a i = i2, bj = 2 + a 2 in L e m m a  5.12. 

In Case (8.2), let aj  = i 2, bj = 2 + ~r 2 in L e m m a  5.15. 

In Case (8.4), let aj  = 12, bj = n in L e m m a  5.19. Since ~ e K ,  (bj,  - 2 )  = 1 

and  so bj = 2u~ + v~ for some u j ,  v j  E K j .  

For the  remaining cases we need the following. 

LEMMA 8.6:  L e t  fl = 1 + i or ~/1 + ~i for ~ = 4-1. T h e n  (fl,  - 2 )  = 1 and  so 

/J = 2 ,~ + v~ /'or some u j ,  vj  e K j .  

Proof." Let F = Q(fl) .  Then  fl is a unit  at  any complet ion o ther  than  the  

comple t ion  F2 of F at  the  unique place dividing 2. Hence ( /3 , -2)~  = 1 for  any 

place v o ther  t han  2. The  result follows f rom the produc t  formula.  | 

In Case (8.3), let aj = 12, bj = 1 + i in L e m m a  5.18 and use L e m m a  8.6. 

In  Case (8.5), let a j  = 12,b1 = x/1 + ei in L e m m a  5.19 and use L e m m a  8.6. 

T h e  weak approx imat ion  theorem and Krasner ' s  L e m m a  imply  the existence of 

e lements  c, u, v E K such tha t  if a = c 2, b = 2u 2 + v 2 and if h ( z )  = x 4 - 2ax  2 + b 

then  Theo rem 4.6 (i) holds. 

Let  w = wv for any place v of K .  By (4.3) 

w ( - 2 ,  A(a))  = (a , -2) (1  - b , - c  2) 

As b = 2u 2 + v 2, (b, - 2 )  = 1. As - 1  = i 2 this yields Theorem 4.6 (ii). 
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THEOREM 9.1: Let K be a number fidd which satisfies condition (*) of Section 

1. Then there exists a quartic polynomial f (x )  E K(x)  such that the following 

hold. 

(i) Gal( f (x) /K)  " E4. 

(ii) There exist two places vl, v2 of K such that the decomposition group at 

each of these is Ds. 

(iii) If w is the Hasse invariant of the form ql over K at any p/ace then 

w(-2 ,  A(I)) = 1. 

Proof: Let h(x) be the polynomial defined by Theorem 4.6. Let h~(x) = h(x)x. 

Let vl, v2 be two places of K such that the decomposition group at these places 

is Ds. By [6, Corollary 2] there exists an H-general polynomial P(x) such that 

if a i  are the roots of hi(x) and/~j are the roots of P(x), then after a possible 

rearrangement K(aj )  = K(flj) for all j .  Thus A(P)  -~ A(hl).  By Mestre's 

Theorem [4] or [3, Section 4] there exists a polynomial FT(X) = P(x) - TQ(x), 

where T is an indeterminate, such that Gal(FT(x)/K(T)) ~ E5 and the quadratic 

forms qFTand qp are equivalent over K(T).  By [3, Lemma 6.3] there exists t E K 

such that  Gal(Ft(z) /g)  " Z5 and the decomposition group at Vl and vz is Ds. 

Hence Ft(x) has a root in the completion Ks of K at vj. Furthermore a splitting 

field of Ft can be imbedded in a field M with Gal(M/g)  ~_ Z + by Serre's 

Theorem [7] or [3, Section 3]. Now the existence of f (x)  follows from either [3, 

Lemma 6.6] or [1, Theorem 4]. | 

THEOREM 9.2: Let f (x )  be the polynomial de~ned in Theorem 9.1. Then there 

exist places va and v4 of K distinct from Vl and v2 such that v I has residue class 

degree 3 over K, a rational prime over vj is greater than 7 and - 3 A ( f )  is a 

nonzero square in the residue class field corresponding to vj for j = 3, 4. 

Proof." Let a be an element of order 3 in the Galois group of f (x) (z  2 + 3A(f))  

over K.  The result follows from the Tchebotarev density theorem. | 

10. A cubic polynomial 0(x) 

The notation of Section 9 is used in this section. Let A = A(f) .  

THEOREM 10.1: There exists a cubic polynomial g(z) with the following prop- 

erties. 
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( i )  A ( g )  ~ ~. 

(ii) A ra t iona/pr ime over vj is greater than 7 and g has ramification index 3 

at vj for j = 3 and 4. 

(iii) g has a root at the completion Kj  of K at vj for j = 1, 2. 

Proof: By Theorem 9.1 

(10.2) V l ( h )  > 0, p'2(A) > 0. 

Thus by Theorem 9.2 there exist algebraic integers 8, a,  ~ E K so that 

s = 27a 2 +/~2A 

and 

v l ( ~ )  = v2(8)  = 0, v3(8)  = ~4(8)  = 1, 

where vj is the valuation corresponding to vj. Thus also uj(a)  = 0 for j = 1,2. 

Then 
48 s = 27(2sa) 2 + (28/3)2A. 

Define 

Then 

g(x) = x s - sx +28a.  

A(9) = 483 - 27(28~) 2 = (28/~) 2A ~ A. 

Thus (i) holds. The Newton polygons imply that (ii) holds. 

Let z" be a prime in Kj  for j = 1 or 2. Substitute 3a in g(x) and g'(x) and 

- 6 a  in g(x). By (10.2) this yields 

g(x) =_ (x -- 3~)2(x  -{- 6ot)(mod ~r). 

Since 3a ~ - 6 a ( m o d  7r) as vj(3) = vj(a)  = 0, Hensel's Lemma implies (iii). 

| 

11. The proof of Theorem A 

The fact that Condition (i), (ii) or (iii) of Theorem A implies (iv) follows from 

Theorem 3.2. 

(iv) =~ (i). This follows from Theorem 4.6. 

Before proceeding we need the next result. 
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LEMMA 11.1: Suppose that K is a number ~eld which satisl~es condition (*) of 

Section 1. Then there exists a monic polynomial F(x)  6 K[x] of degree 7 and 4 

places vl, v2, v3, v4 of K such that the following hold. 

(i) Gal(F(x) /K)  ~- A7 

(ii) The decomposition group at vl and v2 is Ds. 

(iii) The decomposition group at v3 and v4 has order divisible by 9. 

(iv) F (x )  has a root at the completion Kj of K at vj for j = 1,2,3,4.  

(v) / f  v is a place of K and w~ is the Hasse invariant of the form qF over Kv 

then wv = 1. 

Proof: Let f ( x )  be defined in Theorem 9.1 and let g(z) be defined in Theo- 

rem 10.1. By [6, Corollary 21 there exists an H-general polynomial P(x)  such 

that if a i are the roots of f (x )g(z )  and flj are the roots of P(x), then af- 

ter a possible rearrangement K(otj) = K(flj)  for all j .  By Theorem 10.1 (i) 

A(P)  ,,, A( f )A(g)  ~ 1. By Mestre's Theorem [4] or [3, Section 4] there exists 

a polynomial FT(Z) = P(z)  - TQ(x), where T is an indeterminate, such that 

Gal(FT(x)/K(T))  "~ A7 and the quadratic forms qFr and qp are equivalent over 

K(T) .  By [3, Lemmas 6.3 and 6.6] there exists t E K so that if F(x) = Ft(z) 

then Gal(F(x) /K)  " A7 and (ii) and (iii) are satisfied. 

Let Gj be the decomposition group at vj. If j = 1 or 2 then Gj ~ Ds and 

so Gj C_ A6. Hence (iv) is satisfied in this case. If j = 3 or 4 the extension is 

tamely ramified as the prime corresponding to vj is greater than 7. Thus Gj is 

a meta-cyclic subgroup of A7 which contains a S3-group of AT. Hence IGil -- 9. 

Therefore Gj c_ As and (iv) is also satisfied in this case. 

Let v be a place of K and let w = w~. Then 

w(F) = w(P) = w( f )w(g) (A( f ) ,  A(g)) = w( f )w(g) ( -1 ,  A), 

where A = A ( f )  ~ A(g). 

By Theorem 9.1 w( f )  = ( - 2 ,  A). Furthermore w(g) = (2, A) for any cubic by 

Serre's Theorem, see e.g. [2, Lemma 3.13]. Therefore 

w(F) = ( - 2 , A ) ( 2 , A ) ( - 1 , A )  = 1. | 

Lemma 11.1 and Serre's Theorem show that (iv) implies (iii) in Theorem A. 

Thus (iv) implies (ii) by Lemma 11.1 and either [3, Lemma 6.6] or [1, Theorem 

4]. This completes the proof of Theorem A. 
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