THE K-ADMISSIBILITY OF $2A_6$ AND $2A_7$

BY

WALTER FEIT

Department of Mathematics, Yale University Box 2155-Yale Station, New Haven, CT 06520, USA

Dedicated to John Thompson to celebrate his Wolf Prize in Mathematics 1992

ABSTRACT

Let K be a field and let G be a finite group. G is K -admissible if there exists a Galois extension L of K with $G = \text{Gal}(L/K)$ such that L is a maximal subfield of a central K-division algebra. This paper contains a characterization of those number fields which are Q_{16} -admissible. This is the same class of number fields which are $2A_6 = SL(2,9)$ and $2A_7$ admissible.

1. Introduction

Let L be a finite extension field of the field K ; L is K -adequate if L is a maximal subfield of a division algebra with center K.

A finite group *G* is *K*-admissible if $G \simeq \text{Gal}(L/K)$ for some *K*-adequate Galois extension L of K .

The main result of [3] states that if H is any subgroup of $SL(2,5)$ which contains a S_2 -group, and K is a number field, then H is K-admissible if and only if either $\sqrt{-1} = i \notin K$ or K has at least 2 places over the prime 2. In [6] the same conditions were shown to characterize the number fields K for $H = A_6, A_7$ or D_8 , the dihedral group of order 8, to be K-admissible. In this paper we will consider number fields K which satisfy

(*) Either *i* and $\sqrt{-2}$ are both not in K or K has at least 2 places over the *prime 2.*

The purpose of this paper is to prove the next result.

Received July 9, 1992 and in revised form January 31, 1993

THEOREM A: *Let K be an* a/gebraic *number field. The following are equivalent.*

- (i) Q16, *the quaternion group* of order 16, *is K-admissible.*
- (ii) $2A_6 \simeq$ SL(2,9), the double cover of A_6 , is K-admissible.
- (iii) *The double cover 2A7 of Ar is K-admissible.*
- (iv) *Condition (*) is satisfied.*

In an earlier paper [2] it was shown that $2A_6$ and $2A_7$ are Q-admissible. This result is of course subsumed under Theorem A, though a different construction was used in [2].

All of these results are initially based on Schacher's criterion [5] which asserts that a number field L is K-adequate if and only if every Sylow group of $Gal(L/K)$ is contained in the decomposition group for at least 2 places of K . By the Tchebotarev density theorem, only noncyclic Sylow groups need to be considered. Then Mestre's Theorem [4] is used to construct suitable polynomials. The third key result is Serre's Theorem [7], which makes it possible to consider double covers. All of these statements are summarized in [3].

It is not easy to construct a polynomial with Galois group $2A_7$. The smallest possible degree is 240, the minimum index of a subgroup of odd order. As far as I know no one has found a polynomial with Galois group $2A_6$ or $2A_7$ over Q. (I have found one with Galois group $2A_5$ over Q of degree 24 (on a computer), however the splitting field is not Q-adequate.)

The fact that (i), (ii), or (iii) implies (iv) in Theorem A is not difficult. See Theorem 3.2. The converse is however much more subtle. The essential new difficulty arises in the proof of Theorem 4.6. Let K_2 be the completion of K at some place over 2. Assume that $[K_2: \mathbf{Q}_2] > 1$. Then Q_{16} is a Galois group over K_2 . However, additional conditions are needed to show that there exists an extension of K of Q with Galois group Q_{16} such that the decomposition group at K_2 is also Q_{16} . For Q_8 the existence of such an extension can be settled fairly easily, see [3, p.10]. The case of Q_{16} is handled in this paper by constructing explicit polynomials. Unfortunately several cases need to be considered separately. This is done in Sections 5-8. Mestre's method is then applied twice, first in Section 9 to construct a quartic, then in Section 11 to construct a polynomial of degree 7, which is used to complete the proof of Theorem A. [6, Corollary 2] is helpful here.

2. Notation

The notation in this paper is standard but we list some of it here to avoid confusion.

If v is a nonarchimedean place of K and a is an integer in K with $a \neq 0$, then $\nu_{\nu}(a)$ is the exact power of the prime ideal corresponding to v which divides a. If a, b are integers in K with $ab \neq 0$ then $\nu_v(a/b) = \nu_v(a) - \nu_v(b)$. The completion of K at v is denoted by K_{v} .

Let E be a field and let $f(x)$ be a monic polynomial in $E[x]$ with distinct roots. Define $\text{Tr}_f(\alpha)$ to be the trace of α in $E[x]/(f(x))$. Then $q_f(\alpha) = \text{Tr}_f(\alpha^2)$ defines a nondegenerate quadratic form over E. If K is a number field, let $w_v(f)$ denote the Hasse invariant of this form at the place $v, (\alpha, \beta)_v$ denotes the Hilbert symbol at v.

Let $\Delta(f)$ denote the discriminant of the polynomial f.

If $a, b \in K^\times$ write $a \sim b$ if $a = bc^2$ for some $c \in K$.

Let D_n , Q_n denote the dihedral group, quaternion group, of order n respectively.

3. Admissibility for local fields

THEOREM 3.1: Let p be an odd prime and let K_p be a finite extension of \mathbf{Q}_p with residue class field \mathbf{F}_q . Let H be a Galois group over K_p and let T be a *2-group contained in H.*

- (i) If $q \equiv 1 \pmod{4}$ *then* T is not a dihedral group (of order at least 8) nor a *quaternion* group.
- (ii) If $q \equiv 3 \pmod{8}$ *then T is not Q*₁₆.

Proof: Replacing K_p by a finite extension it may be assumed that $H = T$. The corresponding field is tamely ramified as q is odd. Hence T is a homomorphic image of $G = \langle x, y | x^{-1} yx = x^q \rangle$. Let G_4 be the subgroup of G generated by all 4th powers in G and let $\bar{G} = G/G_4$. Then $\bar{x}^{-1}\bar{y}\bar{x} = \bar{y}^q = \bar{y}$ in Case (i) and so neither a dihedral group of order at least 8 nor a quaternion group can be a homomorphic image of G.

If $q \equiv 3 \pmod{8}$ then \bar{y} is not conjugate to \bar{y}^{-1} in $\bar{G} = G / \langle y^8 \rangle$. Thus (ii) follows.

THEOREM 3.2: Let K be an algebraic number field which has only one prime *divisor of 2. Assume that either* $i = \sqrt{-1} \in K$ *or* $\sqrt{-2} \in K$ *. Then none of* Q_{16} *,*

$2A_6$, $2A_7$ is *K*-admissible.

Proof: Let $H = Q_{16}$ or $2A_n$ for $n = 6$ or 7. Suppose that H is K-admissible. Let L be a K-adequate extension of K with $H = Gal(L/K)$. By Schacher's criterion [5] or [3 , Theorem 2.1] a S_2 -group T of H is contained in the Galois group of at least 2 completions of K. As $|T| > 2$, neither of them can be Archimedean. Hence by assumption one of them, K_p , occurs at an odd prime p. Let F_q be the residue class field of K_p . If $i \in K$ then $q \equiv 1 \pmod{4}$. If $\sqrt{-2} \in K$ then $q \equiv 1$ or 3 (mod 8). As T is a quaternion group of order 16, this contradicts Theorem **3.1. |**

4. The construction of certain polynomials

Let K be a number field. Define $h(x) \in K[x]$ by

(4.1)
$$
h(x) = x^4 - 2ax^2 + b, \quad ab \neq 0.
$$

The following 3 facts are well known. See e.g. [3, Section 5]

(4.2)
$$
\Delta(h) = 256b(a^2 - b)^2 \sim b.
$$

If w_v is the Hasse-Witt invariant of the form $\text{Tr}_h(\alpha^2)$ at the place v then

(4.3)
$$
w_v(-2, \Delta(h))_v = (a, -1)_v(b, -2a)_v(a^2 - b, -ab)_v
$$

for every place v of K .

THEOREM 4.4: *The following are equivalent.*

- (i) $h(x)$ is irreducible with $Gal(h(x)/K) \simeq D_8$.
- (ii) $b, a^2 b, b(a^2 b)$ are all nonsquares in K.

For convenience we state here a consequence of Serre's Theorem [7].

THEOREM 4.5: Let L be a splitting field of $h(x)$ over K. Suppose that $Gal(L/K)$ $\simeq D_8$. The following are equivalent.

- (i) $L \subseteq M$ with $Gal(M/K) \simeq Q_{16}$.
- (ii) $w_v(-2, \Delta(h))_v = 1$ for every place v of K.

Our immediate object is to prove the following result.

THEOREM 4.6: *Assume that (*) of Section 1 is satisfied. There exists a polyno*mial $h(x)$ as in (4.1) such that the following hold.

- (i) *There exist at least 2 places* in *K which do not divide 3 so that the decomposition group at each of these is* D_8 .
- (ii) $w_v(-2, \Delta(h))_v = 1$ for every place *v* of *K*.

This will be proved in the next 4 sections. The proof is divided into 3 eases as follows.

(I) $i=\sqrt{-1} \notin K$ and $\sqrt{-2} \notin K$. (II) $i \notin K$, $\sqrt{-2} \in K$. (III) $i \in K$.

5. 2-adie fields

In this section K is a finite extension of Q_2 such that the index of ramification $e = 2k$ is even. Let K_0 be the maximal unramified subfield of K. Then $[K: K_0] = e = 2k$. Let \mathbf{F}_q be the residue class field of K and let A_0 be the group of all $(q-1)$ st roots of unity in K. Let $A = A_0 \cup \{0\}$. Then $A \subseteq K_0$. If π is any prime element in K and θ is an integer in K then

(5.1)
$$
\theta = \sum_{0}^{\infty} \alpha_j \pi^j, \qquad \alpha_j \in A.
$$

Furthermore, the coefficients α_j are uniquely determined by θ . By (5.1)

(5.2)
$$
\theta^2 = \sum \alpha_j^2 \pi^{2j} + 2 \sum_{j < s} \alpha_j \alpha_s \pi^{j+s}
$$

Hence

(5.3)
$$
\theta^2 \equiv \sum_0^k \alpha_j^2 \pi^{2j} + 2\alpha_0 \alpha_1 \pi \pmod{\pi^{2k+2}}.
$$

There exists a unit u with

$$
(5.4) \t\t 2 = \pi^{2k} u
$$

LEMMA 5.5: If $\alpha \in K_0$ and $\alpha \equiv 0 \pmod{\pi}$ *then* $\alpha \equiv 0 \pmod{\pi^{2k}}$.

Proof. Clear as π^{2k} is a prime in K_0 .

LEMMA 5.6: $1 + \pi^2$ *is not a square in K.*

Proof: If $1 + \pi^2 = \theta^2$ then (5.3) implies that

$$
1 + \pi^2 = \sum \alpha_j^2 \pi^{2j} + 2\alpha_0 \alpha_1 \pi \; (\text{mod } \pi^{2k+2}).
$$

Hence $\alpha_0 = \alpha_1 = 1$ and $\alpha_j = 0$ for $1 < j \leq k$. Therefore $0 \equiv 2\pi \pmod{\pi^{2k+2}}$ which is not the case.

LEMMA 5.7: *Suppose that* $\sqrt{-2} \in K$.

- (i) If $e > 2, -(1 + \pi^2)$ *is not a square in K.*
- (ii) If $e = 2$ there exists a prime π_0 such that $-(1 + \pi_0^2)$ is not a square in K.

Proof: Since $\sqrt{-2} \in K$, $u = -v^2$. If $v = \sum_{i} \pi^{i}$ for $\gamma_i \in A$, (5.3) yields

(5.8)
$$
u \equiv -(\gamma_0^2 + \gamma_1^2 \pi^2 + 2\gamma_0 \gamma_1 \pi) \; (\text{mod } \pi^4).
$$

Suppose that $\theta^2 = -(1 + \pi^2)$. As $-1 \equiv 1 + 2 + 4 \pmod{8}$ it follows that

(5.9)
$$
-1 - \pi^2 \equiv (1 + 2 + 4)(1 + \pi^2) \equiv 1 + 2 + 4 + \pi^2 + 2\pi^2 \pmod{\pi^6}.
$$

(i) By (5.3) and (5.9)

$$
1+\pi^2+2\equiv\Sigma\alpha_j^2\pi^{2j}+2\alpha_0\alpha_1\pi \;(\mathrm{mod}\; 2\pi^2).
$$

Hence by (5.8)

$$
1 + \pi^2 + \gamma_0^2 \pi^{2k} \equiv \Sigma \alpha_j^2 \pi^{2j} + 2\alpha_0 \alpha_1 \pi \pmod{2\pi^2}
$$

as $\pi^{2k} \equiv -\pi^{2k}$ (mod $2\pi^2$). Thus $\alpha_0 = \alpha_1 = 1$ and $\alpha_j = 0$ for $1 < j < 2k$. Therefore

$$
\gamma_0^2 \pi^{2k} \equiv \alpha_{2k}^2 \pi^{2k} + 2\pi \pmod{2\pi^2}
$$

and so $\gamma_0^2 \equiv \alpha_{2k}^2 \pmod{\pi}$. By Lemma 5.5, $0 \equiv 2\pi \pmod{2\pi^2}$ which is not the case.

(ii) By (5.9)

$$
-1 - \pi^2 \equiv 1 + 2 + 4 + \pi^2 + 2\pi^2 \equiv 1 + u\pi^2 + u^2\pi^4 + \pi^2 + u^2\pi^4 \pmod{\pi^6}.
$$

As $2\pi^4 \equiv 0 \pmod{\pi^6}$ this yields

(5.10)
$$
-1 - \pi^2 \equiv 1 - (\gamma_0^2 + \gamma_1^2 \pi^2) \pi^2 + \pi^2 \; (\text{mod } \pi^5).
$$

Suppose first that $K_0 \neq \mathbf{Q}_2$. Choose $\gamma \in A, \gamma \neq 1$. Let $\pi = \gamma^{-1}\sqrt{-2}$. Hence $2 = -\gamma^2 \pi^2$ and $v = \gamma = \gamma_0, \gamma_1 = 0$. Now (5.3) and (5.10) imply

$$
1 - \gamma^2 \pi^2 + \pi^2 \equiv \alpha_0^2 + \alpha_1^2 \pi^2 + 2\alpha_0 \alpha_1 \pi \; (\text{mod } \pi^4).
$$

Therefore $\alpha_0 = 1$ and

(5.11)
$$
(1 - \gamma^2 - \alpha_1^2)\pi^2 \equiv 2\alpha_1\pi \; (\text{mod } \pi^4).
$$

Hence $1 - \gamma^2 - \alpha_1^2 \equiv 0 \pmod{\pi}$ and so Lemma 5.5 implies that

$$
0 \equiv 2\alpha_1 \pi \; (\bmod \; \pi^4).
$$

Thus $\alpha_1 = 0$ and (5.11) implies that $\gamma^2 \equiv 1 \pmod{\pi}$ which contradicts the choice of γ .

Suppose finally that $K_0 = \mathbf{Q}_2$. Thus $K = \mathbf{Q}_2(\sqrt{-2})$. Let $\pi = \sqrt{-2}(1 + \sqrt{-2})$. Thus $v = (1 + \sqrt{-2})^{-1}$ and so $v \equiv v^{-1} \equiv 1 + \pi \pmod{\pi^2}$. Thus $\gamma_0 = \gamma_1 = 1$ and (5.10) becomes

$$
-1 - \pi^2 \equiv 1 - \pi^2 - \pi^4 + \pi^2 \equiv 1 + \pi^4 \pmod{\pi^5}.
$$

Therefore (5.3) implies that

$$
1 + \pi^4 \equiv \alpha_0^2 + \alpha_1^2 \pi^2 + \alpha_2^2 \pi^4 + 2\alpha_0 \alpha_1 \pi + 2\alpha_0 \alpha_2 \pi^2 \; (\text{mod } \pi^5).
$$

Hence $\alpha_0 = 1, \alpha_1 = 0$ and so

$$
1 + \pi^4 \equiv 1 + \alpha_2^2 \pi^4 + 2\alpha_2 \pi^2 \equiv 1 + \alpha_2^2 \pi^4 - \alpha_2 \pi^4 \pmod{\pi^5}.
$$

As $\alpha_2 \in K_0$, $\alpha_2^2 - \alpha_2 = 0$ and so $\pi^4 \equiv 0 \pmod{\pi^5}$ which is not the case.

LEMMA 5.12: *Suppose that* $i \in K$ and k is odd. Let $\alpha = 1 + i$. Then $1 + \alpha^2$, $2 + \alpha^2$ and $(1 + \alpha^2)(2 + \alpha^2)$ are all nonsquares in K.

Proof: Since k is odd $\nu(\alpha)$ is odd. Furthermore $2 + \alpha^2 = 2(1+i)$ and so $\nu(2+\alpha^2)$ is odd. Thus neither $2 + \alpha^2$ nor $(1 + \alpha^2)(2 + \alpha^2)$ is a square in K.

Let K_1 be an unramified extension of $\mathbf{Q}_2(i)$. By Lemma 5.6, $1 + \alpha^2$ is not a square in K_1 . Therefore $\mathbf{Q}_2(i, \sqrt{1 + \alpha^2})$ is ramified over $\mathbf{Q}_2(i)$. Hence if $\sqrt{1 + \alpha^2} \in K$ then 2|k contrary to assumption.

LEMMA 5.13: Suppose that $i \in K$ and $k \ge 4$. Let $1 - i = \pi^k v$ for a prime π in *K. Then* $v = \sum \gamma_j \pi^j$ *with* $\gamma_0 \neq 0, \gamma_1 = 0$ and $\gamma_j \in A$ for all j.

Proof: As v is a unit, $\gamma_0 \neq 0$. By definition $1 - i = \pi^k \Sigma \gamma_j \pi^j$. Thus

(5.14)
$$
1 - i - \gamma_0 \pi^k \equiv \gamma_1 \pi^{k+1} \; (\text{mod } \pi^{k+2}).
$$

Since $k \geq 4$, $K_0(i, \pi^k)$ is a proper subfield of K. As

$$
\frac{1-i}{\pi^k}-\gamma_0\equiv 0\ (\mathrm{mod}\ \pi)
$$

it follows that

$$
\nu(\frac{1-i}{\pi^k}-\gamma_0)>1.
$$

Hence $\gamma_1 = 0$ by (5.14).

LEMMA 5.15: Suppose that $i \in K$ and $k \geq 4$. Let π be a prime in K. Then $1 + \pi^2$, $2 + \pi^2$, and $(1 + \pi^2)(2 + \pi^2)$ are all nonsquares in K.

Proof: By Lemma 5.6, $1 + \pi^2$ is not a square in k.

Let $1 - i = \pi^k v$. By Lemma 5.13, $v = \sum \gamma_j \pi^j$ with $\gamma_j \in A$ and $\gamma_1 = 0$. Since

$$
-i = \frac{1}{1 - (1 - i)} = \sum_{0}^{\infty} (1 - i)^j
$$

it follows that

$$
i=-\sum_0^\infty(\pi^k v)^j.
$$

By (5.3) this implies that

(5.16)
$$
iv^2 = -v^2 \sum_{0}^{\infty} (\pi^k v)^j \equiv -v^2 - v^3 \pi^k \equiv v^2 + v^3 \pi^k \; (\text{mod } \pi^{2k}).
$$

Observe that $2 = i\pi^2v^2$. Hence

$$
2 + \pi^2 = \pi^2 (1 + \pi^{2k-2} i v^2).
$$

Suppose that $(2 + \pi^2)(1 + \pi^2)$ is a square, then

$$
1 + \pi^2 + \pi^{2k-2}iv^2 + \pi^{2k}iv^2 = (1 + \pi^2)(2 + \pi^2)\pi^{-2} = \theta^2.
$$

By Lem_ma 5.13, (5.2) and (5.16)

$$
\theta^2 \equiv 1 + \pi^2 + \gamma_0^2 \pi^{2k-2} + \gamma_0^2 \pi^{2k} \; (\bmod \; \pi^{2k+2}).
$$

By (5.3) this implies that

$$
1 + \pi^2 + \gamma_0^2 \pi^{2k-2} + \gamma_0^2 \pi^{2k} \equiv \Sigma \alpha_j^2 \pi^{2j} + 2\alpha_0 \alpha_1 \pi \; (\text{mod } \pi^{2k+2}).
$$

Hence $\alpha_0 = \alpha_1 = 1$ and

$$
\eta \equiv 1 + \pi^2 + \gamma_0^2 \pi^{2k-2} + \gamma_0^2 \pi^{2k} - \Sigma \alpha_j^2 \pi^{2j} \equiv 2\pi \; (\bmod \; \pi^{2k+2}).
$$

Therefore $\nu(\eta) = 2k + 1$. However $\eta \in K(\pi^2)$ and so $\nu(\eta)$ must be even contrary to the previous statement.

Suppose that $2 + \pi^2$ is a square, then so is

$$
1 + \pi^{2k-2}iv^2 = (2 + \pi^2)\pi^{-2} = \theta^2.
$$

By (5.16) and Lemma 5.13

(5.17)
$$
\theta^2 \equiv 1 + \pi^{2k-2} (v^2 + v^3 \pi^k) \equiv 1 + \pi^{2k-2} (\Sigma \gamma_j^2 \pi^{2j} + \gamma_0^3 \pi^k)
$$

$$
\equiv 1 + \sum_j \gamma_j^2 \pi^{2k+2j-2} + \gamma_0^3 \pi^{3k-2} \; (\text{mod } \pi^{3k}).
$$

By (5.3)

$$
\theta^2 \equiv \sum \alpha_j^2 \pi^{2j} + 2 \sum_{j < s} \alpha_j \alpha_s \pmod{\pi^{3k}}.
$$

Hence $\alpha_0 = 1, \alpha_j = 0$ for $1 < j < k-1$ and $\alpha_{k-1} = \gamma_0$. Thus

$$
\theta^2 \equiv 1 + \sum_{j \ge k-1} \alpha_j^2 \pi^{2j} + 2\gamma_0 \pi^{k-1} \; (\text{mod } \pi^{3k}).
$$

Therefore

$$
\eta \equiv 2\gamma_0 \pi^{k-1} \; (\bmod \; \pi^{3k}),
$$

where

$$
\eta = 1 + \Sigma \gamma_j^2 \pi^{2k+2j-2} + \gamma_0^3 \pi^{3k-2} - 1 - \sum_{j \ge k-1} \alpha_j^2 \pi^{2j}.
$$

Hence $\nu(\eta) = 3k - 1$ is odd, which is impossible as $\eta \in K_0(\pi^2)$.

п

LEMMA 5.18: *Suppose that* $i \in K$, none of $\sqrt{1+i}$, $\omega = \sqrt{i}$, $\sqrt{1-i}$ are in K and $[K: K_0] = 4$. Then i, $1 + i$ and $i(1 + i) = -(1 - i)$ are nonsquares in K.

Proof: Clear. \blacksquare

LEMMA 5.19: *Suppose that* $i \in K$, π is a prime in K and $[K: K_0] = 4$. Then π , $1 - \pi$, $\pi(1 - \pi)$ are all nonsquares in K.

Proof: Clearly π and $\pi(1 - \pi)$ are nonsquares in K as they are primes. If $1 - \pi = \theta^2$ then (5.2) implies that $1 - \pi \equiv \alpha_0^2 \pmod{\pi^2}$, which is not the case. **|**

6. Case I of Section 4

Throughout this section K is an algebraic number field such that $i \notin K$ and $\sqrt{-2} \notin K$.

LEMMA 6.1: There exist infinitely many rational primes p with $p \equiv 7 \pmod{8}$ such *that* some prime *divisor of p in K has odd residue class degree.*

Proof: The Galois closure L of $K(\sqrt{2}, i)$ over Q is $\hat{K}(\sqrt{2}, i)$ where \hat{K} is the Galois closure of K. If $i \in K(\sqrt{2})$ then $\sqrt{-2} \in K(\sqrt{2})$ and so $K(i) = K(\sqrt{-2})$. Thus $\sqrt{2} = i\sqrt{-2} \in K$ and so $i \in K(\sqrt{2}) = K$ contrary to assumption. Hence there exists $\sigma \in \text{Gal}(L/K(\sqrt{2}))$ with $\sigma(i) = -i$. By the Tchebotarev density theorem there exist infinitely many primes p some of whose divisors in $K(\sqrt{2})$ correspond to σ . Then $p \equiv 3 \pmod{4}$ and the residue class degree of the selected divisor of p in $K(\sqrt{2})$, and hence in K, is odd. As $\sqrt{2} \in K(\sqrt{2})$, $p \equiv \pm 1 \pmod{8}$. Therefore $p \equiv 7 \pmod{8}$.

Proof of Theorem 4.6 in Case (I): By Lemma 6.1 there exist primes $p_1 \neq p_2$ which do not ramify in the Galois closure \hat{K} of K over Q, all of whose divisors have odd residue class degree in K and satisfy $p_j \equiv -1 \pmod{8}$ for $j = 1, 2$.

Then $p_1 p_2 \equiv 1 \pmod{8}$ and so $p_1 p_2 = \ell^2 + m^2 + n^2$ for $\ell, m, n \in \mathbb{Z}$ such that n is relatively prime p_1p_2 . Hence for any place v of K

(6.2)
$$
(p_1p_2 - n^2, -1)_v = (\ell^2 + m^2, -1)_v = 1.
$$

Let $a = p_1 p_2$, $b = p_1 p_2 n^2$ and let $h(x) = x^4 - 2ax^2 + b$. Then

$$
b \sim p_1 p_2
$$
, $a^2 - b = p_1 p_2 (p_1 p_2 - n^2)$, $b(a^2 - b) \sim (p_1 p_2 - n^2)$.

Let $\{\pi_i\}$ be all the prime divisors of p_1p_2 in K. Let ν_i be the valuation of K corresponding to π_j for all j. As p_1 and p_2 are not ramified in \hat{K} , $\nu_j(b)$ and $\nu_j(a^2-b)$ are odd for all j. Since $p \equiv 3 \pmod{4}, (-1/p) = -1$ for $p = p_1$ or p_2 . As the residue class degree of each π_j is odd this implies that $b(a^2 - b) \sim (p_1p_2 - n^2)$ is not a square in the completion K_j of K at ν_j . This proves Theorem 4.6 (i).

Let $w = w_v$ for any place v of K. By (4.3)

$$
w(-2,\Delta(h)) = (p_1p_2,-1)(p_1p_2,-2p_1p_2)(p_1p_2(p_1p_2-n^2),-1)
$$

= $(p_1p_2,2)(p_1p_2-n^2,-1) = (p_1p_2,2)$

by (6.2). As $p_j \equiv -1 \pmod{8}$, $(p_j, 2) = 1$.

7. Case II of Section 4

Let K_1 and K_2 be two completions of K at prime divisors of 2 in K. For $j = 1$, or 2 use Lemmas 5.6 and 5.7 to choose a prime $\pi_j \in K_j$ so that $\pm (1 + \pi_i^2)$ are both nonsquares in K_i .

Define $h_j(x) = x^4 - 2a_jx^2 + b_j$ with $a_j = 1$ and $b_j = 1 + \pi_j^2$. Then $a_j^2 - b_j = -\pi_j^2$ and $b_j(a_j^2-b_j) \sim -(1+\pi_j^2)$. The weak approximation theorem yields the existence of an element π in K such that if $a = 1$ and $b = 1 + \pi^2$ then Theorem 4.4(ii) holds. Furthermore by Krasner's Lemma it may be assumed that Theorem $4.6(i)$ holds.

Let $w = w_v$ for any place v of K. By (4.3)

$$
w(-2,\Delta(h))=(b,-2)(1-b,-b)=(b,-2)(-\pi^2,1+\pi^2)(-\pi^2,-1).
$$

As $\sqrt{-2} \in K$ and $(-1,-1) = (-1,2) = 1$, Theorem 4.6 (ii) holds.

8. Case III of Section 4

Let K_1 and K_2 be two completions at prime divisors of 2 in K. For $j = 1, 2$ we will first show the existence of elements c_j, u_j, v_j in K_j such that $a_j = c_j^2$, $b_j = 2u_j^2 + v_j^2$ and $h_j(x) = x^4 - 2a_jx^2 + b_j$ has Galois group over K_j isomorphic to Ds. By Theorem 4.4 the latter condition will follow once it is shown that *bj,* $a_i^2 - b_j$ and $b_j(a_i^2 - b_j)$ are all nonsquares in K.

Let e_j denote the ramification index of K_j over \mathbf{Q}_2 . The following cases will be handled separately.

$$
(8.1) \t\t e_j \equiv 2 \; (\text{mod } 4).
$$

152 W. FEIT

Isr. J. Math.

$$
(8.2) \t\t e_j \equiv 0 \pmod{4} \text{ and } e_j > 4.
$$

(8.3)
$$
e_j = 4 \text{ and none of } \sqrt{1+i}, \sqrt{1-i}, \omega = \sqrt{i} \text{ are in } K.
$$

$$
(8.4) \t\t e_j = 4 \text{ and } \omega = \sqrt{i} \in K.
$$

(8.5)
$$
e_j = 4 \text{ and } \sqrt{1 + \varepsilon i} \in K \text{ for } \varepsilon = 1 \text{ or } -1.
$$

In Case (8.1), let $a_j = i^2, b_j = 2 + \alpha^2$ in Lemma 5.12.

In Case (8.2), let $a_j = i^2, b_j = 2 + \pi^2$ in Lemma 5.15.

In Case (8.4), let $a_j = 1^2$, $b_j = \pi$ in Lemma 5.19. Since $\sqrt{-2} \in K$, $(b_j, -2) = 1$ and so $b_j = 2u_j^2 + v_j^2$ for some $u_j, v_j \in K_j$.

For the remaining cases we need the following.

LEMMA 8.6: Let $\beta = 1 + i$ or $\sqrt{1 + \varepsilon i}$ for $\varepsilon = \pm 1$. Then $(\beta, -2) = 1$ and so $\beta = 2u_j^2 + v_j^2$ for some $u_j, v_j \in K_j$.

Proof. Let $F = Q(\beta)$. Then β is a unit at any completion other than the completion F_2 of F at the unique place dividing 2. Hence $(\beta, -2)_v = 1$ for any place v other than 2. The result follows from the product formula.

In Case (8.3), let $a_j = 1^2$, $b_j = 1 + i$ in Lemma 5.18 and use Lemma 8.6.

In Case (8.5), let $a_i = 1^2$, $b_i = \sqrt{1 + \varepsilon i}$ in Lemma 5.19 and use Lemma 8.6.

The weak approximation theorem and Krasner's Lemma imply the existence of elements $c, u, v \in K$ such that if $a = c^2$, $b = 2u^2 + v^2$ and if $h(x) = x^4 - 2ax^2 + b$ then Theorem 4.6 (i) holds.

Let $w = w_n$ for any place v of K. By (4.3)

$$
w(-2,\Delta(h))=(b,-2)(1-b,-c^2)
$$

As $b = 2u^2 + v^2$, $(b, -2) = 1$. As $-1 = i^2$ this yields Theorem 4.6 (ii).

9. The polynomial $f(x)$

THEOREM 9.1: *Let* K be a number *fidd which satisfies condition (*) of Section* 1. Then there exists a quartic polynomial $f(x) \in K(x)$ such that the following *hold.*

- (i) $Gal(f(x)/K) \simeq \Sigma_4$.
- (ii) There exist two places v_1, v_2 of K such that the *decomposition* group at each of *these is Ds.*
- (iii) If w is the Hasse invariant of the form q_f over K at any place then $w(-2, \Delta(f)) = 1.$

Proof: Let $h(x)$ be the polynomial defined by Theorem 4.6. Let $h_1(x) = h(x)x$. Let v_1, v_2 be two places of K such that the decomposition group at these places is D_8 . By [6, Corollary 2] there exists an H-general polynomial $P(x)$ such that if α_j are the roots of $h_1(x)$ and β_j are the roots of $P(x)$, then after a possible rearrangement $K(\alpha_j) = K(\beta_j)$ for all j. Thus $\Delta(P) \sim \Delta(h_1)$. By Mestre's Theorem [4] or [3, Section 4] there exists a polynomial $F_T(x) = P(x) - TQ(x)$, where T is an indeterminate, such that $Gal(F_T(x)/K(T)) \simeq \Sigma_5$ and the quadratic forms q_{F_T} and q_P are equivalent over $K(T)$. By [3, Lemma 6.3] there exists $t \in K$ such that $Gal(F_t(x)/K) \simeq \Sigma_5$ and the decomposition group at v_1 and v_2 is D_8 . Hence $F_t(x)$ has a root in the completion K_j of K at v_j . Furthermore a splitting field of F_t can be imbedded in a field M with $Gal(M/K) \simeq \Sigma_5^+$ by Serre's Theorem $[7]$ or $[3,$ Section 3]. Now the existence of $f(x)$ follows from either $[3,$ Lemma 6.6] or $[1,$ Theorem $4]$.

THEOREM 9.2: Let $f(x)$ be the polynomial defined in Theorem 9.1. Then there *exist places* v_3 *and* v_4 *of K distinct from* v_1 *and* v_2 *such that* v_j *has residue class degree* 3 over K, a rational prime over v_j is greater than 7 and $-3\Delta(f)$ is a nonzero square in the residue class field corresponding to v_j for $j = 3, 4$.

Proof: Let σ be an element of order 3 in the Galois group of $f(x)(x^2 + 3\Delta(f))$ over K . The result follows from the Tchebotarev density theorem.

10. A cubic polynomial $g(x)$

The notation of Section 9 is used in this section. Let $\Delta = \Delta(f)$.

THEOREM 10.1: There *exists a cubic polynomial g(z) with the following prop*erties.

- (i) $\Delta(g) \sim \Delta$.
- (ii) A rational prime over v_j is greater than 7 and g has ramification index 3 at v_j for $j = 3$ and 4.
- (iii) g has a root at the completion K_j of K at v_j for $j = 1, 2$.

Proof: By Theorem 9.1

$$
\nu_1(\Delta) > 0, \qquad \nu_2(\Delta) > 0.
$$

Thus by Theorem 9.2 there exist algebraic integers $s, \alpha, \beta \in K$ so that

$$
s=27\alpha^2+\beta^2\Delta
$$

and

$$
\nu_1(s) = \nu_2(s) = 0, \qquad \nu_3(s) = \nu_4(s) = 1,
$$

where ν_j is the valuation corresponding to v_j . Thus also $\nu_j(\alpha) = 0$ for $j = 1, 2$. Then

$$
4s3 = 27(2s\alpha)2 + (2s\beta)2 \Delta.
$$

Define

$$
g(x)=x^3-sx+2s\alpha.
$$

Then

$$
\Delta(g) = 4s^3 - 27(2s\alpha)^2 = (2s\beta)^2 \Delta \sim \Delta.
$$

Thus (i) holds. The Newton polygons imply that (ii) holds.

Let π be a prime in K_j for $j = 1$ or 2. Substitute 3α in $g(x)$ and $g'(x)$ and -6α in $g(x)$. By (10.2) this yields

$$
g(x) \equiv (x - 3\alpha)^2(x + 6\alpha)(mod\ \pi).
$$

Since $3\alpha \neq -6\alpha (mod \ \pi)$ as $\nu_j(3) = \nu_j(\alpha) = 0$, Hensel's Lemma implies (iii). **|**

11. **The proof of Theorem** A

The fact that Condition (i), (ii) or (iii) of Theorem A implies (iv) follows from Theorem 3.2.

 $(iv) \Rightarrow (i)$. This follows from Theorem 4.6.

Before proceeding we need the next result.

LEMMA 11.1: *Suppose that* K is a number field which satisfies condition $(*)$ of *Section 1. Then there exists a monic polynomial* $F(x) \in K[x]$ *of degree 7 and 4* places v_1, v_2, v_3, v_4 of K such that the following hold.

- (i) $Gal(F(x)/K) \simeq A_7$
- (ii) The decomposition group at v_1 and v_2 is D_8 .
- (iii) *The decomposition group at v3 and v4 has* order *divisible by 9.*
- (iv) $F(x)$ has a root at the completion K_j of K at v_j for $j = 1, 2, 3, 4$.
- (v) If v is a place of K and w_v is the Hasse invariant of the form q_F over K_v *then* $w_v = 1$.

Proof: Let $f(x)$ be defined in Theorem 9.1 and let $g(x)$ be defined in Theorem 10.1. By [6, Corollary 2] there exists an H -general polynomial $P(x)$ such that if α_j are the roots of $f(x)g(x)$ and β_j are the roots of $P(x)$, then after a possible rearrangement $K(\alpha_j) = K(\beta_j)$ for all j. By Theorem 10.1 (i) $\Delta(P) \sim \Delta(f)\Delta(g) \sim 1.$ By Mestre's Theorem [4] or [3, Section 4] there exists a polynomial $F_T(x) = P(x) - TQ(x)$, where T is an indeterminate, such that $Gal(F_T(x)/K(T)) \simeq A_7$ and the quadratic forms q_{F_T} and q_P are equivalent over *K(T).* By [3, Lemmas 6.3 and 6.6] there exists $t \in K$ so that if $F(x) = F_t(x)$ then $Gal(F(x)/K) \simeq A_7$ and (ii) and (iii) are satisfied.

Let G_j be the decomposition group at v_j . If $j = 1$ or 2 then $G_j \simeq D_8$ and so $G_j \subseteq A_6$. Hence (iv) is satisfied in this case. If $j = 3$ or 4 the extension is tamely ramified as the prime corresponding to v_j is greater than 7. Thus G_j is a meta-cyclic subgroup of A_7 which contains a S_3 -group of A_7 . Hence $|G_j| = 9$. Therefore $G_j \subseteq A_6$ and (iv) is also satisfied in this case.

Let v be a place of K and let $w = w_v$. Then

$$
w(F)=w(P)=w(f)w(g)(\Delta(f),\Delta(g))=w(f)w(g)(-1,\Delta),
$$

where $\Delta = \Delta(f) \sim \Delta(g)$.

By Theorem 9.1 $w(f) = (-2, \Delta)$. Furthermore $w(g) = (2, \Delta)$ for any cubic by Serre's Theorem, see e.g. [2, Lemma 3.13]. Therefore

$$
w(F)=(-2,\Delta)(2,\Delta)(-1,\Delta)=1.\qquad\blacksquare
$$

Lemma 11.1 and Serre's Theorem show that (iv) implies (iii) in Theorem A. Thus (iv) implies (ii) by Lemma 11.1 and either [3, Lemma 6.6] or [1, Theorem 4]. This completes the proof of Theorem A.

References

- [1] B. Fein and M. Schacher, *Q-admissiblity questions/'or alternating groups,* J. Algebra 142 (1991), 36o-382.
- [2] W. Feit, *The Q-admissibility of* $2A_6$ *and* $2A_7$ *, to appear.*
- [3] P. Feit and W. Feit, *The K-admissibility* of SL(2,5), Geometriae Dedicata 36 (1990), 1-13.
- [4] J.-F. Mestre, *Extensions reguliéres de* Q(T) de groupe de Galois \tilde{A}_n , J. Algebra 181 (1990), 483--496.
- [5] M. Scha~her, *Sublields of division* rings, J. Algebra 9 (1968), 451-477.
- [6] M. Schacher and J. Sonn, *K-Admissibility of A₆ and A₇, J. Algebra 145* (1992), 333-338.
- [7] J.-P. Serre, *L'invariant de Witt de la forme Tr(x2),* Comment. Math. Helv. **59** (1984), 651-676.